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Summary

A major issue with ‘league tables’ of deprivation, university performance and other indicators
is that they attempt to impose a rank ordering on multivariate sets of indicators. In this talk, an
approach to working with such multivariate descriptors is proposed that attempts encapsulate
some degree of comparison between individual entities without presuming that a full ranking is
well-defined, through the use of partially ordered sets. The approach is demonstrated on a set of
well being indicators in the US.
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1 Introduction

It is quite common practice to assess some social aspect of places in terms of compound indices
of well-being, deprivation or some other portmanteau term, whose aspects are measured in terms
of several officially compiled statistics — see for example Noble et al. (2006). Typically, if these
statistics are denoted as s1;, 25, -+ , Sm; for locations ¢ = 1---m, then the indicator is a weighted
combination of these quantities, say

I; = wis1; +waso + -+ + WinSmi

Often the I; values over the locations i and are ranked and prsented as a ‘league table’ This is
problematic since although it is acknowledged that a portmanteau concept is being measured, and
that it requires several variables to attempt to encapsulate all aspects of the concept, ranking is
only meaningful for scalar (one dimensional) quantities. The weighted sum approach attempts to
overcome this by projecting the several statistics onto the real line therefore creating a scalar, but
ranking then depends on choice of weights. If the weights change sufficiently, different rankings will
be reported. However, choice of weights is often subjective, reflecting an individual’s choice of the
importance of each variable.

In this paper, an alternative approach via partially ordered sets or posets (Dushnik and Miller, 1941)
is considered - this aims to identify structure in this kind of data allowing for the fact that in some
cases, the multi-dimensionality of the indicators results in some pairs of places not being comparable
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in a convincing way. These have been applied in a GI science context previously (Kainz et al., 1993)
to model relationships between spatial entities, but here they will be used to analyse attributes of
spatial objects. The final outcome is a visualisation approach that highlights overall trends, but
avoids imposing a complete ordering on the attributes where no consensual ordering is achievable.

2 A Practical Example

To illustrate the issues introduced above, consider a data set taken from the U.S. Dept. of Commerce
Bureau of the Census in 1977' having variables for each of the 48 co-terminous States of the US as
listed in Table 1 below

Indicator | Name Description
51 Income  Per capita income (1974)
S9 Nliteracy Illiteracy (1970 percept of popn.)
S3 LifeExp  Life expectancy in years (1969-71)
S4 Murder ~ Murder and non-negligent manslaughter rate per 100,000 popn. (1976)
S5 HSGrad  Percent high-school graduates (1970)

Table 1: US Well-being variables

Suppose these were used to create a well-being index encompassing measures of income, educational
attainment, mortality and crime, via the following procedure: firstly standardising s - - - s5 to z-scores
(denoted z - - - z5 respectively) and changing signs for z2 and z5 so that higher scores for Illiteracy
and Murder correspond to ‘better’ outcomes. Secondly combining z; - - - z5 to create the weighted
index w121 + wozo + w3z3 + wyzy + Ws2s.

Now suppose one analyst wishes to weight all of the z-scores equally, so that wy = we = --- = w5 = 1,
giving an index I, whilst another analyst places a double weighting on Murder, so that their index,
I5 is defined by with all w; = 1 except ws = 2. Each ranking gives a ‘league table’ of US states, as
shown in Figure 1 below. On the left the states are listed on the basis of ranking of I1, and on the
right they are listed on the basis of I5. In the centre of the tables lines join each state in the two
‘leagues’, to allow comparison of their rankings. Clearly due to lack of concensus in weight choice
there is some variation between the tables, with most inconsistencies towards the centre of the tables.

Although in both ‘league tables’ there is some consensus - most states are near the top, or near the
bottom or somewhere central in both tables, strict ranking is ambiguous.

As an alternative, suppose principle components were used to inform the weighting. The loadings
for all principle components based on the z-scores (with signs for Illiteracy and Murder reversed)
are given in table 2 :

The loadings of the first component suggest that this is a weighted overall well-being measure, placing
slightly less importance on Income than the other scores. The second component contrasts Income

1U.S. Department of Commerce, Bureau of the Census Statistical Abstract of the United States and County and
City Data Book (1977).
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PC1 PC2 PC3 PC4 PChH
Income 0.37 0.75 054 -0.05 -0.14
Illiteracy | 0.49 0.02 -0.30 -0.65 0.50
LifeExp | 0.47 -0.33 0.32 0.57 0.49
Murder 0.45 -0.53 0.24 -0.27 -0.62
HSGrad | 0.46 0.24 -0.68 0.42 -0.31

Table 2: US Principal Component Analysis Weights

and High School Graduate rates against the other scores. Were the first principle component to be
used as an alternative index, this accounts for 69.0% of the variance suggesting that a reasonable
amount of the structure in this data requires more than one dimension to be represented - this can
also be seen in Figure 2 - in which the first and second principal components of the data are plotted.

Considering issues of variability due to choice of weights (due to subjective choice of weighting scheme)
and variability in the data beyond that acheivable through a one-dimensional weighted index (as in
the principal components example) it seems that that in general the data is not meaningfully and
unambiguously rankable - and that comparison between ranks will have results that are influenced
by the (subjective) choice of weights.

Thus, in this paper an alternative approach is proposed. In the above example, although some US
states clearly have a better degree of well-being than others a strict ranking may not be meaningful,
and a consensus as to a definitive ranking may not be reachable. Thus, an approach to comparison
using partially ordered sets or posets is considered here. A poset is a set, together with a comparison
operator which may be applied to some pairs of elements in the set, but not neccessarily all. In this
paper, it will be outlined how geographical data sets such as that in the above example may be
represented as a poset, and how this may be used as a tool to identify structure (including some
aspect of stratification) in the data, without going to the extreme of providing a strict ranking where
this may not be appropriate. In addition, the degree to ranking ¢s a valid option may be assessed.

3 Posets: an Overview

In this section, the basic ideas underlying posets will be introduced. Suppose there is a set P and a
binary relation <, defined between elements of P. Then {P, <} is a poset if < satisfies, for a,b,c € P

1. a = a (Reflexivity)
2. If a X band b < a then a = b (Antisymmetry)
3. If a <= band b < ¢ then a < ¢ (Transitivity)

If either a < b or b < a then a and b are comparable. However, it is not required all a, b pairs are
comparable: there could be a, b pairs for which neither a < b nor b < a.

If in a particular poset all a and b are comparable, it is known as a totally ordered set or simply an
ordered set, and in this case < is simply a comparison operator. For example if P = {1---10} and
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= is simply the numerical comparison operator < then {P, <} is both a poset and an ordered set.
With an ordered set, ranking is always possible - any sorting algorithm may be applied using =< as
the comparison operator used in choosing whether to swap a and b in an ordered list. However, here
attention will be focussed more on situations where {P, <} is a poset but not an ordered set.

3.1 Posets: Further notation and vocabulary

Although the definitions above are sufficient to specify a poset, some further terms are useful to
simplify further discussion and outline further ideas. A number of further relational operators may
be defined in terms of <.

1. b>aifand only if a < b
2.a<bifa<band a#b
3.a=bifa>band a#b

Also some further terms are defined:

e A chain C C P is a set such that all a,b in C are comparable. Note that a chain is therefore
an ordered set. A chain is mazimal if no other chain C’ exists such that C C C’.

o The depth of a poset {P, <} is the length of its longest chain.

e An antichain A C P is a set such that no distinct a,b in A are comparable. An antichain is
mazimal if no other antichain A’ exists such that A c A'.

¢ An element a € P is a mazimal element if there is no element b € P such that ¢ < b. The
mazimal element set is the set of all such elements.

e An element a € P is a minimal element if there is no element b € P such that b < a. The
minimal element set is the set of all such elements.

e If a,b are distinct elements in P and a < b and there is no ¢ in P such that a < cand ¢ <b
then a is said to cover b - denoted by a <1 b or b > a.

3.2 Relating Posets to US Well-being Data

Above a number of formal definitions are given - in this section they will be related to multivariate
data sets and applications in indexing and ranking. The key idea is to attribute each US state with
a vector (21,22, -+ ,25) of the 5 z-scores as defined in section 2, and designate these as elements
in P, together with a partial ordering relation = intended to compare states, when comparison
has meaning. The definition proposed here is that if ¢ and b are states represented by the vectors
(Z1as 224y "+ 25a) and (z1p, 22p,  ** , 25p) then

a < bif and only if 214, < z1p and 29, < 29p and - - - 254 < 25
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Figure 3: Hasse Diagram (Peeled Minimal Elements)

That is, a =< b implies that every z-score for state a is less than or equal to that for state b. If neither
a = b nor a = b than the two states are not comparable. This will occur when some of the z scores
for state a are are greater than or equal to the equivalent scores for state b, but some are not.

3.3 Visualising Posets

Posets are often represented by Hasse Diagrams. These are diagrams representing the elements of a
poset for which the =< relation holds. The diagrams take the form of a network where paths are
directed (that is a path from a to b differs from a path from b to a) and where, if nodes a amd b
satisfy @ < b then there is a path from a to b on the network. This can be achieved if there is a
directed edge from a to b if a > b. Also, if @ < b then on the diagram, a will appear to the aligned
with, or to the left of b. Note that in general, there is not a unique Hasse diagram for a given poset.
One particular Hasse diagram for the US well-being data is shown in Figure 3.

Here, a peeled minimal element algorithm is used - so that the rightmost column of states form
the minimal element set - and the preciding column consists of the minimal element set after the
previous elements are removed, and so on. This implies that Missippi, Arkansas, Louisiana, Georgia,
South Carolina and Alabama are such that there are no states that they rank above on all of the
‘scores’. Note that this does not imply that the leftmost column are the maximal element set - note
that Utah and Maryland are elements of this set, but are in the second column from the left.
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Figure 4: Hasse Diagram (Peeled Maximal Elements)

An alternative Hasse diagram arrangement is a peeled mazximal element algorithm, which progressively
assigns columns from left to right, by recursively identifying the maximal element set and removing
it. The resultant diagram for the US states is shown in Figure 4.

Although this gives a slightly different picture, both show the complexity of the relationships in a
way that a weighted indicator and league table approach systematically masks. The first diagram
highlights states with lower well being - in the sense that in the leftmost column states that have at
least one indicator that is worst than any other state, whereas the second shows those with a better
level of well being - these have no states that having at least one indicator that issecond to none.

4 The Geographical Viewpoint

To gain an insight into geographical aspects of these relationships, a very simple approach is to relax
the left-right dependency rule in Hasse diagrams, and use the geographical location of each state to
determine the location of the node. This is seen in Figure 5. A backdrop of US co-terminous states
is also added to provide context.

A clear trend is visible - perhaps a stronger narrative than the Hasse diagrams earlier - showing that
in general states in the north west tend to enjoy a better state of well being (at least on the basis of
this index) than those in the south, and towards the eastern seaboard.
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Figure 5: Hasse Diagram (Based on Geographical Location)



Florida California

ko

Chain Order

4 Downstream
3 Downstream
2 Downstream
1 Downstream

Self
1 Upstream
2 Upstream
3 Upstream
Alabama Texas 4 Upstream
! 'g § ] ! Not in chain
New York Vermont

Figure 6: State-focused Relationship Maps

4.1 State-focused Relative Chains

Further insight nmay be gained by considering an individual state in relation to the others in the
US. In particular, when considering a the network representing a Hasse diagram, for a given state
one can find the length of the path to all of the other states. If we consider state s, there will be
a set C, of states that are unrelated to s - that is if x € Cs then neither of x < s or s < z holds -
that is states for which some indices are greater for s and some for which they are greater for x.
There will also be a set of states D, that are ‘downstream’ from s - that is there is a path from s to
these states on the Hasse diagram. There will also be another set of states U, that are ‘upstream’
from s. There exists a path from these states to s on the Hasse diagram. These distinct sets can be
shown on a choropleth map. This is shown in Figure 6 - also using intensity of shading to show the
length of the path on the Hasse diagram for states in Dy and U; - for a sample of six states - Florida,
California, Alabama,Texas, New York and Vermont.

From these maps it is evident that certain spatial trends occur - for example although California
has one of the higher well-being score sets the states downstream are predominantly in the south
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and east of the US. For Florida there are some upstream and some downstream states, but the
downstream ones are in the south east and the upstram ones are further west. Alabama has generally
low scores, but most of the upstream states are further north.

Another striking point is that the unrelated states in each of the examples appear to be spatially
clustered. Finally it can be noted that in these examples, many of the neighbours of the focal state
s are members of C, - that is, although patterns are observed over wider distances, there are fewer
clear relationships between nearby states.

It is also notable that the non-comparable states exhibit spatial clustering. For example, a join-count
statistic (Cliff and Ord, 1981) applied to the New York map (testing for clustering of members of
Cs in the New York map) has a value of 3.03 and a p-value of 0.001 suggesting strong evidence of
clustering.



4.2 Minimal and Maximal Elements and the Maximal Antichain

In terms of identifying trends, it is also helpful to map the geographical location of the states in
the sets of m inimal and maximal elements - and also the those constituting the maximal antichain.
There are shown in Figure 7 - again there are clear spatial patterns oin all of these - the minimal
element set consisting entirely of coterminous states in the south-eastern US. The maximal elements
make two coterminous groups, one in the northwest, spreaading to the midwest, and another in
the north east. These tell a similar story to the state-focused maps shown earlier. The maximal
antichain again suggests large spatial clusters - this time of incomparable states - where no state
betters its neighbours in all of the well-being indicators. Although the visualisation provides strong
evidence, those who feel compelled to carry out a formal statistical test may consult the join count
statistic tests in table 3.

These tests reinforce the suggestion in an earlier section, that although a full ranking may not be
meaningful, and indeed impose spurious detail, there are broader geographical trends in terms of
the location of the minimal and maximal element sets. There is also evidence - in the form of
spatial autocorrelation of the maximal antichain members - that nearby states are prone to being
incomparable. Both of these observations lead to a hypothesised variant on Tobler’s First Law
(Tobler, 1970) for partially orderable data :

“not everything is comparable to everything else, but near things are less likely to be
comparable than distant things.”

This has implications in the analysis of weighted indices, particularly when using statistics such as
Moran’s I - since this is defined in terms of neighbouring values of the variable under investigation.
Whereas this may be useful in situations where a scalar quantity is intuitively defined, it may be
less interpretable in the analysis of portmanteau indicators, where neighbouring values appear to be
less likely to be consensually comparable.

Join Count Statistic p-value
Minimal Elements 5.043 0.000
Maximal Elements 4.076 0.000
Maximal Antichain 2.817 0.002

Table 3: Results of Join-Count tests for Spatial Arrangement
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