
Interfacing NoSQL with open-source GIS

Vasilios Kalogirou, Jan Boehm

Department of Civil, Environmental and Geomatic Engineering ï University College London

January 12, 2017

Summary

This paper focused on bringing together two different types of GIS software: MongoDB, a spatially-

enabled NoSQL Database Management System, and QGIS, a desktop GIS software. By assessing the

functionality offered by the community-based plugins ñMongoConnectorò and ñLoad MongoDB

Layersò the need to further enhance interfaces between the two systems was identified. With regard to

this need, ñSave Layer in MongoDBò was developed, a QGIS plugin which allows users to store vector

data in MongoDB.

KEYWORDS: MongoDB, QGIS, open-source GIS, Python, vector data

1. Introduction

According to Steiniger and Hunter (2013, p.5) a spatially-enabled Database Management System

(DBMS) is a DBMS which offers spatial data types in its data model, a query language, and spatial

analysis operators. In addition, it may provide spatial indexing structures such as R-tree indexes.

Spatially-enabled DBMSs are usually used for storing large geospatial datasets and for performing

operations which need to be executed in as short time as possible (Steiniger and Hunter, 2012). Object-

Relational DBMSs have been the leading spatially-enabled DBMSs.

1.1. NoSQL systems

Recent technological advances such as the growth of the World Wide Web have resulted in generating

large sets of data such as links, social networks, and mapping data and prompted to the development

of alternative data models (Sadalage and Fowler, 2013). The term NoSQL is an umbrella for the

DBMSs that do not make use of the relational model and share the following key features (Näsholm,

2012): built for Big Data applications, distributed, not ACID compliant ï eventually consistent,

schemaless, open-source, replication supportive, sharding (horizontal scalability) supportive, not SQL

supportive.

Various approaches have been suggested in regard to NoSQL systemsô classification. Figure 1 presents

Robinsonôs taxonomy (2015, p.196) based on the differences between the data models, while Table 1

classifies a number of NoSQL DBMSs according to their data model.

vasilios.kalogirou.15@ucl.ac.uk

Figure 1 Types of NoSQL data models [taken from:(Robinson, Webber and Eifrem, 2015)]

Table 1 Classification of NoSQL systems by data model [taken from: (Sadalage and Fowler, 2013)]

Data Model Example Databases

Key-Value BerkeleyDB, LevelDB, Memcached, Project Voldemort, Redis, Riak

Document CouchDB, MongoDB, OrientDB, RavenDB, Terrastore

Column-Family Amazon SimpleDB, Cassandra, HBase, HyperTable

Graph FlockDB, HyperGraphDB, Infinite Graph, Neo4j, OrientDB

1.2. MongoDB

MongoDB is a document DBMS which offers features such as horizontal scaling, secondary indexes,

range queries, sorting, aggregations, file storage (GridFS), and geospatial indexes (Chodorow, 2013).

A single instance of MongoDB can host multiple independent databases. Each database consists of

collections which are composed of documents. A document is an ordered set of keys with associated

values (Chodorow, 2013). MongoDB collections can have a dynamic schema, meaning that documents

in a collection can vary in structure. MongoDB documents are stored in a binary encoding called BSON

which extends the JSON representation to include additional types (MongoDB Inc., 2016a). Table 2

presents an SQL to MongoDB Mapping Chart for terminology and concepts.

Table 2 SQL vs MongoDB terminology and concepts [taken from: (MongoDB Inc., 2016d)]

SQL Terms/Concepts MongoDB Terms/Concepts

database database

table collection

row document or BSON document

column field

index index

table joins embedded documents and linking

primary key (Specify any unique

column or column combination as

primary key)

primary key (In MongoDB, the primary key is

automatically set to the _id field)

aggregation (e.g. group by) aggregation pipeline

https://docs.mongodb.com/manual/reference/glossary/#term-database
https://docs.mongodb.com/manual/reference/glossary/#term-collection
https://docs.mongodb.com/manual/reference/glossary/#term-document
https://docs.mongodb.com/manual/reference/glossary/#term-bson
https://docs.mongodb.com/manual/reference/glossary/#term-field
https://docs.mongodb.com/manual/reference/glossary/#term-index
https://docs.mongodb.com/manual/reference/glossary/#term-primary-key
https://docs.mongodb.com/manual/reference/glossary/#term-id

Spatial functionality in MongoDB is supported with the ñ2dsphereò and ñ2dò geospatial indexes.

Geospatial data in MongoDB can be stored in two ways: either as GeoJSON objects on a spherical

surface using a geographic 2D CRS or as legacy coordinate pairs using a projected CRS. The default

CRS for GeoJSON objects is the WGS84 and the coordinate-axis order is [longitude, latitude]. The

following types of GeoJSON objects are supported: ñPointò, ñLineStringò, ñPolygonò (can contain

multiple rings), ñMultiPointò, ñMultiLineStringò, ñMultiPolygonò, ñGeometryCollectionò (MongoDB

Inc, 2016). Legacy coordinate pairs should only be used to store point data. It is still possible to store

an array of points as legacy coordinate pairs, however, the data will be used as an array of points and

not as a line. This is important when applying an inclusion query to data of this type: the query will

match a document if one of those points is within the polygon tested; it will not test if the line created

by these points is within the polygon (Chodorow, 2013). The statements below are taken from the

Mongo Manual 3.2. (MongoDB Inc., 2016b) and provide an example on how to store GeoJSON objects

in MongoDB and how to create a ñ2dsphereò index on a collection.

MongoDB supports three types of topology functions in the form of geospatial queries: queries for

inclusion, intersection, and proximity. Within and intersection queries can be performed on data without

a geospatial index, although having a geospatial index speeds up the query process. MongoDB does

not support reprojection operations. Table 3 presents MongoDBôs geospatial operators along with the

geometry type each operator uses.

Table 3 MongoDB geospatial operators [taken from: (MongoDB Inc., 2016c)]

Query type Geometry type Notes

$near (GeoJSON point, 2dsphere index) Spherical

$near (legacy coordinates, 2d index) Flat

$nearSphere (GeoJSON point, 2dsphere index) Spherical

$nearSphere (legacy coordinates, 2d index) Spherical Use GeoJSON points instead.

$geoWithin : { $geometry: ... } Spherical

$geoWithin : { $box: ... } Flat

$geoWithin : { $polygon: ... } Flat

$geoWithin : { $center: ... } Flat

$geoWithin : { $centerSphere: ... } Spherical

$geoIntersects Spherical

1.3. Interfaces between spatially-enabled DBMSs and desktop GIS software

A significant limitation of spatially-enabled DBMSs is the absence of a Graphical User Interface for

data visualisation. This limitation can be confronted by retrieving geospatial data stored in a DBMS

and visualising them using a desktop GIS software. QGIS, a popular open-source desktop GIS software,

supports retrieving data from a number of databases such as Oracle and PostgreSQL. It also offers

enhanced capabilities for handling such data through community-developed plugins. More importantly,

QGISô DB Manager core plugin supports maintaining a connection between a PostgreSQL / Oracle /

SQLite database with QGIS. The plugin enables users to visualise, query, edit and analyse data through

the QGIS GUI, while data is maintained in the database. The fact that NoSQL databases have not been

>db.places.insert(

 {

 loc: {type: "Point", coordinates: [- 73.97, 40.77]},

 name: "Central Park",

 category: "Parks"

 }

)

>db.places.crea teIndex({loc: "2dsp here"})

https://docs.mongodb.com/manual/reference/operator/query/near/#op._S_near
https://docs.mongodb.com/manual/reference/glossary/#term-geojson
https://docs.mongodb.com/manual/reference/operator/query/near/#op._S_near
https://docs.mongodb.com/manual/reference/glossary/#term-legacy-coordinate-pairs
https://docs.mongodb.com/manual/reference/operator/query/nearSphere/#op._S_nearSphere
https://docs.mongodb.com/manual/reference/glossary/#term-geojson
https://docs.mongodb.com/manual/reference/operator/query/nearSphere/#op._S_nearSphere
https://docs.mongodb.com/manual/reference/glossary/#term-legacy-coordinate-pairs
https://docs.mongodb.com/manual/reference/glossary/#term-geojson
https://docs.mongodb.com/manual/reference/operator/query/geoWithin/#op._S_geoWithin
https://docs.mongodb.com/manual/reference/operator/query/geometry/#op._S_geometry
https://docs.mongodb.com/manual/reference/operator/query/geoWithin/#op._S_geoWithin
https://docs.mongodb.com/manual/reference/operator/query/box/#op._S_box
https://docs.mongodb.com/manual/reference/operator/query/geoWithin/#op._S_geoWithin
https://docs.mongodb.com/manual/reference/operator/query/polygon/#op._S_polygon
https://docs.mongodb.com/manual/reference/operator/query/geoWithin/#op._S_geoWithin
https://docs.mongodb.com/manual/reference/operator/query/center/#op._S_center
https://docs.mongodb.com/manual/reference/operator/query/geoWithin/#op._S_geoWithin
https://docs.mongodb.com/manual/reference/operator/query/centerSphere/#op._S_centerSphere
https://docs.mongodb.com/manual/reference/operator/query/geoIntersects/#op._S_geoIntersects

around for long, and offer only a limited number of spatial capabilities means there have not been many

efforts in interfacing spatially-enabled NoSQL systems with GIS software. The most significant

interfaces are the community-developed plugins ñMongoConnectorò and ñLoad MongoDB Layersò

which offer retrieving data stored in a MongoDB database and visualising them in QGIS.

2. Data

For the purposes of this paper, a number of GeoJSON files were downloaded from OSM

(https://mapzen.com/data/metro-extracts/) presenting data in the city of London. Each of these files

contained a GeoJSON feature collection object. The ñrestaurants.jsonò and ñneighborhoods.jsonò files

from MongoDBôs online tutorial (https://docs.mongodb.com/v3.0/tutorial/geospatial-tutorial/) were

also used. All fil es used are described in Table 4.

Table 4 Vector data sets used

File Name and extension Type

(geometry type)

CRS Collection name

in MongoDB

london_england_aeroways.geojson Feature collection (linestring) WGS84 aeroways

london_england_transport_points.geojson Feature collection (point) WGS84 transport_points

london_england_transport_areas.geojson Feature collection (polygon) WGS84 transport_areas

neighborhoods.json Feature-like (polygon) n/d* neighborhoods

restaurants.json Feature-like (point) n/d* restaurants

*n/d: not defined, there is no indication of the identity of the CRS inside the file.

3. Evaluation of MongoDBôs spatial functionality and of existing interfaces between MongoDB

and QGIS

3.1. Evaluation of MongoDBôs spatial functionality

First, the GeoJSON feature collection files were imported in MongoDB using the ñmongoimportò tool.

The following commands were executed in the Windows command line:

~ represents the directory where the file was stored. The result from executing the first command was

the following:

Consequently, the file was stored in MongoDB as one document in the ñtransport_pointsò collection.

As stated in Section 1.2., geospatial data should be stored as separate documents and not as a single

document in the form of a feature collection GeoJSON file. To achieve this, twenty features from the

ñlondon_england_transport_points.geojsonò file were manually selected and formed a new JSON file

named ñlondon_england_transport_points_altered.jsonò.

>mongoimport -- db mytestdb -- collection transport_points <

~\ london_england_transport_points.geojson

>mongoimport -- db mytestdb -- collection aeroways < ~ \ london_england_aeroways.geojson

>mongoimport -- db mytestdb -- collection transport_areas <

~\ london_england_transport_areas.geojson

connected to: localhost

mytestdb.transport_points 11.5 MB

imported 1 docum ent

https://mapzen.com/data/metro-extracts/
https://docs.mongodb.com/v3.0/tutorial/geospatial-tutorial/

A geospatial index on the geometry field was then created in the Mongo Shell.

The following statements evaluated MongoDBôs topology operators.

>mongoimport -- db mytestdb -- collection transport_points2 <

~\ london_england_transport_points_altered.json

connected to: localhost

imported 20 documents

> db.transport_points2.createIndex({geometry:"2dsphere"})

{

 "createdCollectionAutomatically" : false,

 "numIndexesBefore" : 1,

 "numIndexesAfter" : 2,

 "ok" : 1

}

> db.transport_points2.count({geometry: {$geoInterse cts: {$geometry: {type:

"Point", coordinates:[- 0.241885673740143, 51.606101317886576]}}}})

1

> db.transport_points2.count({geometry: {$geoWithin: {$geometry: {type: "Polygon",

coordinates: [[[- 0.50, 51.10], [- 0.10, 51.10], [- 0.10, 51.70], [- 0.50, 51.7 0], [-

0.50, 51.10]]]}}}})

7

> db.transport_points2.find({geometry: {$geoWithin: {$centerSphere: [[- 0.20, 51.50],

10/6371]}}}).pretty()

{

 "_id" : ObjectId("57a4f3c0fa2886144433538f"),

 "type" : "Feature",

 "properties" : {

 "id" : 15,

 "osm_id" : 197446,

 "name" : null,

 "type" : "motorway_junction",

 "ref" : null

 },

 "geometry" : {

 "type" : "Point",

 "coo rdinates" : [

 - 0.229456903895425,

 51.51495549694939

]

 }

}

{

 "_id" : ObjectId("57a4f3c0fa2886144433538e"),

 "type" : "Feature",

 "properties" : {

 " id" : 16,

 "osm_id" : 202077,

 "name" : "Staples Corner",

 "type" : "motorway_junction",

 "ref" : "1"

 },

 "geometry" : {

 "type" : "Point",

 "coordinates" : [

 - 0.229431003814597,

 51.57310201654954

]

 }

}

Next, the ñneighborhoods.jsonò and ñrestaurants.jsonò files were stored in the database. As shown in

MongoDBôs online tutorial (MongoDB Inc., 2016c), geospatial indexes and queries could be applied

to the ñneighborhoodsò and ñrestaurantsò collections.

3.2. Evaluation of the ñMongoConnectorò plugin

Figure 1 presents the pluginôs interface.

Figure 2 The ñMongoConnectorò plugin interface

db.transport_points2.find({geometry: {$nearSphere: {$geometry: {type: ñPointò,

coordinates: [- 0.20, 5 1.50]}, $maxDistance:10000}}}).pretty()

{

 "_id" : ObjectId("57a4f3c0fa2886144433538f"),

 "type" : "Feature",

 "properties" : {

 "id" : 15,

 "osm_id" : 197446,

 "name" : null,

 "type" : "motorway_junction",

 "ref" : null

 },

 "geometry" : {

 "type" : "Point",

 "coordinates" : [

 - 0.229456903895425,

 51.51495549694939

]

 }

}

{

 "_id" : ObjectId("57a4f3c0fa2886144433538e"),

 "type" : "Feature",

 "properties" : {

 "id" : 16,

 "osm_id" : 202077,

 "name" : "Staples Corner",

 "type" : "motorway_junction",

 "ref" : "1"

 },

 "geometry" : {

 "type" : "Point",

 "coordinates" : [

 - 0.229431003814597,

 51.57310201654954

]

 }

}

The plugin successfully imported the ñtransport_points2ò collection by creating a layer in the deviceôs

memory which was imported in QGIS under the name ñtransport_points2-ebd4ò as shown in Figure 3.

The attribute table of the layer is shown in Figure 4. The layerôs labels were set according to the value

of the ñosm_idò attribute. However, the plugin failed to import the ñtransport_pointsò, ñrestaurantsò,

and ñneighborhoodsò collections.

Figure 3 The ñtransport_points2-ebd4ò layer created by ñMongoConnectorò representing the

ñtransport_points2ò collection

Figure 4 The attribute table of the ñtransport_points2-ebd4ò layer

3.3. Evaluation of the ñLoad MongoDB Layersò plugin

Figures 5 and 6 present the pluginôs interface.

Figure 5 ñLoad MongoDB Layersò - ñConnectionò dialog

Figure 6 ñLoad MongoDB Layersò - ñSettingsò Dialog (used to select and import a collectionôs

documents according to a field value)

The ñtransport_points2ò collection was successfully imported in QGIS using the plugin under the name

ñtransport_points2ò. Figure 7 shows the ñtransport_points2ò layer in QGIS. The layerôs labels were set

according to the ñidò attribute values. Before importing the collection, the additional capabilities of the

plugin shown in Figure 6 were tested. However, the plugin failed to accomplish this task. The plugin

also failed to import the ñtransport_pointsò collection.

Figure 7 The ñtransport_points2ò layer created by ñLoad MongoDB Layersò representing the

ñtransport_points2ò collection

As shown in figure 8, the plugin created an attribute for each field and added the propertiesô sub-fields

as attributes under the names ñproperti1ò, ñproperti2ò, and so on, instead of assigning the exact names

of the sub-fields.

Figure 8 The attribute table of the ñtransport_points2ò layer

The ñneighborhoodsò and ñrestaurantsò collections were successfully imported as shown in Figure 9.

Figure 9 The ñrestaurantsò and ñneighborhoodsò layers created by ñLoad MongoDB Layersò

representing the ñrestaurantsò and ñneighborhoodsò collections respectively

4. Development of the ñSave Layer in MongoDBò plugin

In order to enhance the interfaces between MongoDB and QGIS, the ñSave Layer in MongoDBò Python

plugin was developed. The plugin allows users to store features from a vector layer in QGIS to a local

MongoDB server as GeoJSON objects. Its interface, which is shown in Figures 2 and 5, was designed

in Qt Creator. The plugin requires the Pymongo module to be installed and can be accessed from:

https://github.com/VasiliosKalogirou/Save-layer-in-MongoDB.

4.1. Testing the plugin

To test the pluginôs functionality, the ñlondon_england_aeroways.geojsonò,

ñlondon_england_transport_points.geojsonò, and ñlondon_england_transport_areas.geojsonò files

were imported in QGIS. In order for the plugin to connect to the database server, an instance of the

server must be activated. If the server is offline the message shown in Figure 10 is generated by the

plugin. The same message is shown if the user types the server name or port number incorrectly.

Figure 10 Connection error message generated by ñSave Layer in MongoDBò

Using the plugin, all three layers were successfully stored in the ñlondonò database in MongoDB as

ñaerowaysò, ñtransport_pointsò, and ñtransport_areasò collections respectively. To test the pluginôs

functionality over storing a layerôs selected features, a subset of 109 features were selected from the

transport points layer as shown in Figure 11. Figure 12 presents the plugin interface before storing the

selected features in the ñtransport_points_selectedò collection. Figure 13 presents the message

generated by the plugin.

https://github.com/VasiliosKalogirou/Save-layer-in-MongoDB

Figure 11 Transport points layer selected features

Figure 12 ñSave Layer in MongoDBò interface - Storing selected features in the

ñtransport_points_selectedò collection

Figure 13 Message generated by ñSave Layer in MongoDBò for successfully storing selected features

in the ñtransport_points_selectedò collection

To check the data stored in MongoDB, the contents of the ñlondonò database were examined within the

Mongo Shell as shown below.

