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Summary 
Knowing where people live is crucial to provide timely and effective relief in humanitarian crises. To 
date, the population distribution in vulnerable parts of the developing world is insufficiently mapped, 
particularly in low population density areas. Based on work in the Missing Maps project, we propose a 
method to obtain cheap estimates of the population that combines automated processing of satellite 
imagery and a crowdsourced, manual classification collected through the MapSwipe app. The method 
produces granular estimates of rural population and is illustrated on a case study in a vulnerable border 
region in Sierra Leone. 
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1. Introduction 

In humanitarian catastrophes, data about the affected area is needed to increase the effectiveness of 
responses. Notably, spatial information about the distribution of population and the road network is 
critical for emergency management, and yet is missing for large portions of the world. The absence of 
information greatly limits the abilities of organisations to plan and deliver an adequate response in case 
of emergency. Across many parts of Africa, this essential spatial information is often of limited quality, 
outdated, or even completely missing (Linard et al., 2012). Moreover, the available data often has low 
spatial resolution and does not provide sufficient detail about rural and urban settlement patterns, and 
is therefore of limited value to determine how to respond to natural and man-made disasters. Since the 
population in Africa is primarily rural (UN, 2015), the availability of data about rural areas is highly 
important. To date, estimating the population distribution in areas of low density with existing databases 
is challenging (Linard et al., 2013).  

Existing geodemographic databases use a combination of population counts and detailed satellite-
derived settlement extents to map population distributions across the planet (Linard et al., 2012). 
However, these data sources have some disadvantages. Although many land cover and population 
density datasets can be used free of charge, they are often of variable quality and timeliness (Friedl et 
al., 2002), limiting their usefulness for disaster management. A notable example is that of China's 
GlobeLand30, completed in 2014, with high spatial resolution and advanced cloud-removal algorithms, 
which reflected the status of the Earth's land cover from 2010. Moreover, the spatial resolution of the 
population distribution databases is often 500–1,000 meters only, leaving small towns and farms in the 
vicinity of large settlements de facto invisible. Such data can lead to poor planning choices for relief 
organisations. 
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2. Humanitarian mapping and volunteered geographic information (VGI) 

The discovery and mapping of “invisible” rural areas represent a complex challenge. When facing 
natural disasters, wars, and outbreaks, international organisations such as the Red Cross, Médecins Sans 
Frontières/Doctors Without Borders (MSF) and UN agencies need target areas to be mapped rapidly 
and accurately. Since 2010, volunteered geographic information (VGI) and collaborative mapping have 
been deployed in these scenarios with notable success (Zook et al., 2010). Local community volunteers 
map the main characteristics of settlements, including evacuation centres, potential sites for temporary 
hospitals, and so forth. Typically, field mapping is then complemented by remote mapping based on 
satellite imagery, which can be performed by volunteers on the Web.  

Systematic efforts in this direction are made by the Humanitarian OpenStreetMap Team (HOT), which 
coordinates volunteers to perform mapping tasks in emergency crises (Goodchild & Glennon, 2010).  
In this arena, the Missing Maps project emerged in November 2014 as a collaboration between MSF, 
HOT, the American Red Cross, and the British Red Cross, to map vulnerable places in the world 
(Michael, 2014). In many instances, the learning curve of the digital mapping tools is steep, and only 
computer-literate and motivated volunteers tend to remain involved. As broadening participation is one 
of the fundamental challenges to increase the quality of crowdsourced data (Ballatore and Zipf, 2015), 
efforts are being made to reduce the entry barrier to the remote mapping process by developing more 
usable and accessible tools and techniques for remote, crowdsourced mapping. 

3. MapSwipe 

In July 2016, MSF released the MapSwipe app (http://mapswipe.org), which aims at reaching users to 
support the Missing Maps missions, adopting the approach of gamification. Through the smartphone 
app, users are shown satellite imagery about small portions of a target area, and are asked to indicate 
whether roads and settlements can be seen. MapSwipe divides satellite imagery into tiles of 256 x 256 
pixels (about 24,000 m2), with a spatial resolution of 150 meters. Users are asked to tap directly on the 
tiles (Figure 1). To date, 13,000 users collectively scanned millions of square kilometres of imagery, 
making more than 8.8M contributions to record signs of human presence such as buildings or roads. As 
the number of individuals involved in the process tends to increase the mapping quality (Haklay et al., 
2010), several volunteers are asked to classify the same tiles, resulting in a raster dataset representing 
the likelihood of presence of human settlements and/or roads. 

 

Figure 1: Classification task in the MapSwipe app (Source: https://wiki.openstreetmap.org) 
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4. Method for the estimation of population in high- and low-density areas 

Thanks to collaborative mapping efforts, it is now possible to obtain information about the distribution 
of the population in vulnerable areas, providing a new, high-quality data source to governments and 
relief organisations. To overcome the challenge of mapping low-population areas, we outline a new 
information fusion approach, selecting a border region in West Africa as a case study. The proposed 
method is able to determine an examined area’s settlement structure in a fast and cost-effective way, 
combining existing satellite imagery and data generated by volunteer mappers. In this case study, 
Landsat imagery provides the high-density settlement structure, while MapSwipe data enables the 
identification of the extents of low-density areas, such as villages and farms. 

4.1 High population density areas 

In our approach, high population density areas are identified by settlement extents provided by 
processing Landsat imagery.3 Well-known methods were selected to pre-process the data, starting with 
dark-object subtraction (DOS), a correlation method used because of the atmospheric scattering reduces 
the inaccuracy caused by scattering. Then, we used the pan-sharpening method to create a high-
resolution colour image, combining lower resolution (30 m) multispectral “colour” bands (1, 2, and 3) 
with the higher resolution (15 m) band 8. This image helps recognise objects when selecting regions of 
Interest (ROI). The converted land cover map was filtered to obtain the settlement pattern, i.e., high 
population density areas, as a raster dataset. The result was then compared with OpenStreetMap 
building data, showing that it covered ~70% of the OSM buildings. As this approach is insufficient by 
itself, it was extended to be more sensitive to low-density areas. 

4.2 Low population density areas 

Data generated by volunteers through the MapSwipe app was used to determine the spatial extent of 
the low population density areas. The case study area was a border region in West Africa, between 
Sierra Leone and Guinea, which was badly hit by the 2014 Ebola epidemic and remains particularly 
vulnerable. The MapSwipe task for the case study partially covered 8 wards in Guinea and 12 in Sierra 
Leone, but only the Toli ward (Kono	District, Sierra Leone) was completely covered, and was therefore 
selected to illustrate our method. The MapSwipe data was then converted into 3 different values for 
each tile (green, yellow, and red). Figure 2 shows the MapSwipe data for the ward generate by 1,031 
volunteers in 2016, including pre-existing OSM data. The MapSwipe data clearly identifies more 
settlements and roads than those defined in OSM. 
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followed by GeoDa for the settlement pattern validation (Dormann et al., 2007).	
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Figure 2: MapSwipe and OSM data for Toli ward (Sierra Leone) 

Finally, results of the settlement structure from Land Cover map created from Landsat imagery were 
combined with data obtained by MapSwipe. As an input, each pixel of the settlement structure map can 
have two possible values (0 or 1), while the MapSwipe map has four possible values (“no”, “yes”, 
“maybe”, “bad imagery”). Through a dedicated algorithm, the two raster datasets were combined into 
8 possible values, as shown in Table 1. The map in Figure 3 shows the results of this method spatially. 
It is possible to note that the resulting map provides much richer and granular estimation of population, 
than those obtained solely from satellite imagery and OSM. 
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Pixel value Description Estimate 
0 Both input zero No population 
1 LandCover Yes, MapSwipe No Classification error 
2 LandCover No, MapSwipe Yes Low population 
3 LandCover Yes, MapSwipe Yes High population 
4 LandCover No, MapSwipe Maybe Low population 
5 LandCover Yes, MapSwipe Maybe Low population 
6 LandCover No, MapSwipe Bad image No data 
7 LandCover Yes, MapSwipe Bad image Unknown 

Table 1: Raster values of combination of high and low population density estimates 

 

	
Figure 3: Population distribution in the Toli ward (Sierra Leone), based on the combination of 

Landsat and MapSwipe data 
	

The combined use of MapSwipe and Satellite images can provide a fast, cheap and efficient solution, 
and has several practical applications. For example, thanks to these estimates, an organisation like MSF 
can determine suitable locations for hospitals and/or supply bases, reaching the previously under-
represented rural population in the area (see Figure 4). 
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Figure 4: Health-care facility's catchment area in Toli ward (Sierra Leone), based on Landsat and 

MapSwipe population estimates 

 

5. Conclusion 

The proposed method of population estimation can identify inhabited areas by combining traditional 
satellite imagery and spatial crowdsourcing, as shown in a case study in Sierra Leone. As the necessary 
software and input datasets are open source and volunteered mapping practices are well-established, the 
method is cost-effective and scalable. More research is needed to evaluate the accuracy of the estimates, 
and other possible data sources to make the estimates more robust. Thanks to the usability and reach of 
MapSwipe, it will be possible to include increasingly more volunteers to estimate population in 
vulnerable parts of the world. The resulting spatial databases are useful not only to relief organisations, 
but also to local actors for planning and development, saving time, resources, and, most importantly, 
lives. 
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