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Summary

The question of whether cities are complex or not is surprisingly difficult to answer. This
paper discusses three defining criteria of complex systems relevant to urban structure:

hierarchy and scale, discontiniuties and path dependence, and emergence and causality.
Evidence is reviewed for the complexity of cities in relation to these criteria, concluding that

cities are likely hierarchically structured, and manifest both spatial and temporal
discontinuities, yet that evidence for emergence and complex, circular causality within urban
systems is largely lacking. This paper provides a very preliminary roadmap for the incipient

science of cities as complex systems.
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1 Introduction

The overwhelming majority of urban science to date has not treated cities as complex systems. It
has been argued that urban systems are simply too complex to be studied within the framework of
complex systems (Stewart, 2001). Methods and models from the science of complex systems are,
however, likely to offer great advances for understanding urban structure, and this paper accordingly
surveys a few domains in which cities are demonstrably complex, or in which methods and models
from complexity science are likely to yield fruitful insight into urban structure and dynamics.

This paper examines three properties of complex systems, and how these might relate to the struc-
ture of cities (Samet, 2013): (i) Hierarchy and Scale, (ii) Discontinuities and Path Dependence,
and (iii) Emergence and Causality. Where extant, evidence in each case is presented from both
mathematical and simulation models, with due acknowledgement that simulation models can only
demonstrate mechanistic plausibility, and can rarely provide general insight into how cities (dynam-
ically) behave or (statically) manifest the properties of complex systems (O’Sullivan, 2009).
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2 Properties of Complex (Urban) Systems

2.1 Hierarchy and Scale

An etymological interpretation of hierarchy requires complexity to arise through the interactions
of multiple constituent parts (Levin, 2003) arranged in a hierarchical manner (Allen and Starr,
1982; Holling, 1992). A second, contrasting interpretation neglects the requirement of distinct
components, and relies on the lesser requirement of processes acting, or patterns emerging, across
wide ranges of scales (Bak et al., 1987, 1988; Song et al., 2005). Although this kind of self-similarity
appears to be a general property of urban systems (Makse et al., 1998; Batty et al., 1989; Bettencourt
et al., 2007, 2008; Bettencourt, 2013; Cohen, 1981; Friedmann, 1986; Batty, 2006, 2008), it implies
that the same processes are responsible for observed patterns across all scales (Taylor, 1997). This
interpretation is rejected here, because complex systems are asserted to require different processes
at different scales (Wu, 1999).

Hierarchies within urban systems have generally only been examined as exogenous phenomena,
primarily in simulation models (Sanders et al., 1997; Pumain, 2008). Exogenous hierarchies can
not reveal how hierarchical differences might emerge, and whether or not properties or processes
at different scales are distinct or distinguishable from mere (linear) aggregation. Models have
been developed to describe the spontaneous formation of hierarchically-arranged groups, yet these
generally require pre-specifying numbers of hierarchical levels (Gil-Quijano et al., 2007), although
advances have been made toward modelling formation of an arbitrary number of groups at specified
levels (Gil-Quijano et al., 2012; Caillou and Gil-Quijano, 2012; Vo et al., 2013).

The requirement of discernible hierarchical distinctions implies that processes as well as patterns
must change across scales (Manson and OSullivan, 2006). Changes in process across hierarchical
levels have been incorporated in spatial interaction models (Clayton, 1982; Fotheringham, 1986;
Fotheringham et al., 2001; Fik et al., 1992), although resultant models are merely hierarchical and
devoid of any necessary complexity. A promising alternative, which has been successfully applied
to the simulation of urban sprawl (Zou et al., 2012; Torrens et al., 2013), is to construct ensembles
of fine-scaled simulations in order to characterise their temporal development in aggregate, and to
use that to construct a temporally coarser simulation which is used in place of otherwise unknown
macroscopic equations governing a system’s state (Kevrekidis et al., 2003, 2004).

Processes defining the dynamics of groups at different hierarchical levels will differ whenever and
wherever the effects of agglomeration are non-linear—a strikingly simple requirement that never-
theless appears not to have been considered in any urban studies to date. Both theoretical models
and empirical data have described processes of agglomeration into single centres (Leonardi and
Casti, 1986; Weidlich and Haag, 1987), while agglomeration into multiple centres (Leonardi and
Casti, 1986; Krugman, 1993; Fujita and Thisse, 1996), as well as the emergence of structured hier-
archical relationships (Rosser, 1994; Postiglione and Hewings, 2008), have been studied only within
specifically economic systems.

Hierarchy is generally conceived of as emerging from processes of agglomeration (Flack, 2012),



yet any agglomeration must also be presumed capable of fragmenting (Zachary, 1977; Bonabeau
et al., 1999), including entire cities (Fujita and Mori, 1997). Complex hierarchies will thus be
necessarily dynamic structures that themselves change and evolve, and must therefore be assumed
to be transitory rather than reflective of stable states (Phelps, 2004), requiring both dynamic models
and methods of analysing dynamic systems.

Finally, there are strong reasons to suspect that hierarchies composed of distinguishable yet likely
multiply–confounded levels (Simon, 1962; Goldstein, 2002) can not emerge from local recursion rules
typical of simulation models, primarily because these fail to generate the kind of novelty necessary for
hierarchical distinctness. It nevertheless remains highly uncertain what kind of simulation or other
systems might be capable of generating such emergent hierarchies. Moreover, general techniques
for discerning and analysing hierarchical structure (Wikle, 2003; Chen et al., 2007) have yet to
be applied beyond the domains in which they were developed (respectively ecology and network
theory).

2.2 Discontinuities and Path Dependence

Discontinuities within complex systems are often conceived of as primarily temporal manifestations
of irreversible processes, leading to systematic dependence on historical developmental trajectories
or, in short, path dependence, which is also a defining property of urban systems (Arthur, 1988;
Straussfogel, 1991). What has until now been almost entirely overlooked in complex social systems
is that path dependence in any spatially distributed system must also imply place dependence
(but see O’Sullivan, 2009). If any one part of a system can undergo a phase transition (Solé
et al., 1996), or some equivalently irreversible, bifurcating process, then other parts can presumably
follow different trajectories, producing discontinuities that ought to leave lasting spatial traces.
The classic complex systems manifesting such place-dependent traces are magnetic domains, yet
place dependence as a manifestation of complex discontinuities has yet to be considered in urban
realms. Spatial discontinuities must nevertheless emerge within complex systems through dynamic
processes, and discontiniuties are thus directly related to the following further defining criterion of
complex systems, that of emergence.

The path dependence of urban systems has long been hypothesised, and models have convincingly
demonstrated how urban systems develop their own unique historical trajectories which act to con-
strain future developmental trajectories (Allen and Sanglier, 1978; Straussfogel, 1991; Markusen,
1996). While such path dependence may be presumed to imply some form of temporal discontinu-
ity, this has neither been explicitly examined nor demonstrated (although again, such issues have
been given extensive consideration within economics, Rosser, 2003). Models demonstrating path
dependence may be devoid of discontinuity if the full space of possible states is in fact reachable
from any point, and it is very difficult to formally demonstrate whether path dependence necessarily
implies discontinuity.

Discontinuities have been observed for urban systems in the form of localised ‘clumping’ in distribu-
tions of city sizes (Bessey, 2002; Garmestani et al., 2005, 2007, 2008, 2009), although quantitative
models of the processes leading to such clumping have yet to be developed. Quantitative models



that produce discontinuities have been developed in models of urban economies (Haag and Den-
drinos, 1983; Zhang, 1994), which are capable of generating aperiodic, chaotic oscillations. Such
oscillations not only demonstrate path dependence, but can readily produce discontinuities as os-
cillations at different frequencies become entrained in a hierarchical coupling (Rosser, 1994). While
this provides compelling evidence of complex behaviour, these models are again not amenable to
generalisation beyond their exclusively economic formulation.

2.3 Emergence and Causality

The above definition of hierarchy resolves one difficulty in defining complex systems, that of defin-
ing emergence (Rastetter and Vallino, 2015). Hierarchical levels may serve as appropriate struc-
tures or processes to judge as emergent, yet hierarchical levels are nevertheless unlikely to emerge
through distinct processes, rather new levels are more likely to emerge from an entangled soup (or
‘gel’, Sheller, 2004) that is irretrievably ‘confounded’ with the lower level from which it emerges
(Goldstein, 2002). Importantly, such ‘confoundedness’ will generally render impossible any formal
distinction of levels.

Observations of discontinuities will thus never be demonstrable without uncertainty. Moreover, this
confoundedness both of hierarchical structure and emergence must translate into a concomitant
confounding of causal paths. Unlike in classical Newtonian-like systems in which causality operates
unidirectionally, causality in complex systems must always be considered circular. Particularly
important in complex systems is the causal constraint of higher hierarchical levels on lower levels
(O’Sullivan, 2009)—usefully referred to as ‘downward causation’ (Ulanowicz, 2004).

Hypothetical models of complex systems will thus not be generally verifiable in terms of demon-
strated causality, rather they must be corroborated through more sophisticated means including
the generation of a range of observable phenomena. Urban systems will also manifest complex
webs of horizontal or mutual causality between components at the same hierarchical level (Galster,
2001), and satisfactory models or hypotheses must extricate to some degree these complex causal
webs, and provide explanations of how such extrication can be translated into empirically observable
phenomena.

Finally, emergent hierarchical structures will impose top-down causality (Campbell, 1974; Ulanow-
icz, 2004) that can not necessarily be anticipated in advance. Even absent this kind of top-down
causation, causality may be impossible to preempt when aggregative processes are non-linear—as
required for hierarchical systems—because a group may cause an effect on another group that is
not understandable in terms of any linear scaling of individual properties between those groups.
This may apply as much to horizontal relationships among non-hierarchically structured groups as
to hierarchical relationships.



3 Concluding Comments

There is significant theoretical understanding of hierarchy in urban systems, yet comparably lit-
tle empirical evidence to date, although analytical techniques from other domains are likely to be
directly applicable. Discontinuities have been observed in urban systems, and indubitably exist
in spatial delineations between neighbourhoods, yet future work must confront the difficult task
of developing dynamic models for the generation and dynamic maintenance of spatial discontinu-
ities. Understanding emergence in urban systems is likely to be the most difficult of the properties
discussed here, requiring models and analytic techniques for circular causality between ill-defined
components. Although there is surprisingly little evidence to date that cities are, or may be mod-
elled as, complex systems, future developments are likely to indeed reveal the complexity of urban
spaces.
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