

Building a Sensor infrastructure for long term monitoring

Harris N1, James P1, Dawson D1, Joncyzk J1,Pearson D1

Newcastle University, School of Civil Engineering and Geosciences, Newcastle upon Tyne, NE1

7RU

December 1st, 2016

Summary

Long term monitoring off a city at many different scales and across many different sectors requires a
flexible system to incorporate the heterogeneous nature of the data. He were outline the schema-less

approach to data management taken by the Newcastle Urban Observatory.

KEYWORDS: Big-data, schema-less, database, open-source

1. Background

The Newcastle Urban Observatory aim is to create a platform for understanding how the city behaves
as a whole. In order to achieve this a city as a whole must be monitored. This is challenging due to
complex nature of a city, comprising of many sectors that are not only complex in isolation but also
have complex inter-sector relationships (Muller et al., 2013). Therefore a holistic monitoring platform
must be developed that is able to deal with the diverse data representing as many sectors as possible.

In most previous platforms where data is assembled of many heterogeneous cross sectoral data sources
the data is often sourced through various feeds and kept in isolation. This confinement of the data
creates issues when trying to perform any kind of cross sectoral analysis. Therefore for a more
successful holistic system a heterogeneous data scheme should be implemented.

As each sectoral data source is diverse storing this feeds together in one cohesive whole can be
challenging and requires a flexible data structure that is able to not only suit current data feeds but is
also malleable enough to accommodate future data feeds whose structure is unknown.

The traditional structured database approach to either involve creating a table for every data feed which
is problematic when trying to query the data, or one large table with multiple columns which not only
creates a large amount of redundancy but is impossible to future-proof for newer data feeds. Therefore
many cohesive data projects adopt a schema-less approach. The approach adopted here is to use a key
value pairs of semi-structured data

Key value stores allow a much more flexible data store as opposed to a database table with strict
columns. (Seeger, 2009) outlines this key value approach to storing data, describing it as data usually
consisting of a string which represents the key and the actual data which is considered to be the value
in the "key - value" relationship. The data itself is usually some kind of primitive of the programming
language (a string, an integer, and an array) or an object that is being marshalled by the programming
languages bindings to the key value store. This replaces the need for fixed data model and makes the
requirement for properly formatted data less strict. Nakamura et al. (2011) Designed and implemented
a new database approach for storage and delivery of sensor data called uTupleSpace. uTupleSpace is a
schema-less style data store consisting of key/value pairs. It was found by using this schema-less

approach they were able to meet increases in variety and quantity of sensor data.

2. The current approach

The approach that Newcastle Urban Observatory took was to build a flexible data store in PostgreSQL
using the hstore extension (Corti et al., 2014). This approach is also used by openstreetmap for storing
their data (Corti et al., 2014). The hybrid approach of creating a schema-less store inside a structured
database allows for the ACID nature of PostgreSQL to be harnessed but allowing for varied to be stored
in a single store without the need for on-the-fly schema changes. Additionally PostGIS (Obe and Hsu,
2015) the spatial extension of PostgreSQL can also be utilised allow the data to be queried and analysed
spatially in the database environment rather than having to carry out spatial operations in an additional
middleware layer which can often be time consuming .

One drawback to using the flexible column type hstore is that all of the values of the key value pair are
stored as text and whilst when querying the data simple on-the-fly conversions allow both numerical
and geographical queries to be made, there is no data side system preventing the insertion of an incorrect
data type. Therefore surrounding the database and managing all interactions with the data is a python-
based middleware layer. This was is built on top of the pyscopg2 module and is used to perform all
interactions and insertions with the database (Westra, 2015).

As the ideology behind the UO was to build a simple system that worked from the outset but was able
to grow organically as the system grew, the database initially consisted of 4 tables their schemas
outlined in figure 1. With information on the source of sensor feeds going into the sensor_source table,
information on individual sensors, including geometry, going into the sensors table. Raw sensor
readings going into the sensor_data table and information about each variable recorded being stored in
the readings table. This table along with python middleware layer are used to retrospectively flag
readings with values outside of a suitable range, i.e. negative rainfall values. On-the-fly unit
conversions also take place in the middleware layer using default unit and conversion formula which
has also stored in the readings table.

Table Name Column Name Column Type Description
Sensors Row_num Int Row number
 Info hstore Sensor information

including location
Sensor_source Row_num Int Row number
 Info hstore Sensor feed

information including
documentation

Sensor_data Row_num Int Row number
 Info hstore Raw sensor readings
Readings Row_num Int Row number
 Info hstore Variable information

including default units
acceptable value range
and unit conversion
formula

Figure 1Database structure

This system was able to perform adequately for the start of the project but as the number of readings
and daily data traffic increased overtime the query performance on the sensor_data table dropped below
at critical threshold. In order to increase efficiency the sensor_data table was partitioned over the year
of the reading with a function added to postgresql to generating a set of subqueries to allow the
corresponding partition table to be queried.

3. Current Status and Performance

As described earlier the Urban Observatory has grown in volume over time with the number of sensor
reading records now approaching 250 million. The growth of the data and feeds are shown in figures
2,3 and 4. With the data not only increasing in amount and daily traffic but also the breadth of the
readings that are recorded in the UO system.

Figure 2 Database records over time

Figure 3 sensor reading and number of sensors growth over time

Figure 4 variable growth over time

As the system grows it is important that querying the database remains at a suitable level. The query
performance was investigated by running some analysis that queried an increasing amount of data and
measured both the response size and time for that query to return the results. Poorly tuned databases
not only takes more time than it ought, it also tends to scale badly as data volumes increase. Therefore
it is important that there is not an exponential relationship between query time and size of query
(Moniruzzaman and Hossain, 2013). From the analysis (figure 5) performed it is invent that there is a
linear relationship between both the query time and hours queried and query time and size of response.

As well as testing the performance of query with increasing amount of hours of data further analysis
was run with keeping the number of hours as 50 but querying on an increasing amount variables and
then sensor ids. The performance again showed a linear and not exponential relationship between size
of query and time taken shown in figures 6 and 7.

Figure 5 Query perform of hours of data

Figure 6 Variable performance

Figure 7 Sensor Performance

As the vision of the UO is to both record and disseminate data in real-time in addition to the query time
it is also important that the inserts into the database remain rapid as the table grows. A quick
demonstration of the insert performance was tested where an increasing dummy dataset was inserted
into the system. The system’s insert rate remains relatively stable as the amount of rows inserted.
Figures 8 and 9 show the results, with the insert rate remaining relatively stable as the amount of data
inserted increased.

Figure 8 Insert rate

Figure 9 Insert rate

4. Future Work

Whilst the quick analysis shows that the database system performance is of a reasonable level, the
current system is a compromise between time series, spatial and attribute queries. And as in the grand
scheme of a holistic sensing platform disc space is relatively in expensive therefore rather than feeding
data into one database harnessed for query comprise at faster more elegant system may be to duplicate
all data inputs into several different databases tuned to perform best at certain query types. I.e. a
PostGIS enabled PostgreSQL database for spatial queries, an Influxdb instance for time series queries
and an in-memory database such as Redis database instance for live value queries. This will involve
the development of a much more complex middleware layer as an elegant means of feeding data into
several database instances will need to be developed and well as a query management system that passes
a given set of query parameters to the appropriate database.

5. Biography

Mr Neil Harris is a researcher and software developer working on the UO programme. Mr Philip James
is a Senior Lecturer in Geographic Information Science at Newcastle University. Prof. Richard Dawson
is the Professor of Earth Systems Engineering and co-leads the UO programme of research at
Newcastle. Dr Jennine Joncyk is a researcher working on the UO programme with a focus on urban
water. Mr Dave Pearson is a technician working on UO deployment.

References

Corti, P., Kraft, T.J., Mather, S.V. and Park, B. (2014) PostGIS Cookbook. Packt Publishing Ltd.
Moniruzzaman, A.B.M. and Hossain, S.A. (2013) 'Nosql database: New era of databases for big data
analytics-classification, characteristics and comparison', arXiv preprint arXiv:1307.0191.
Muller, C.L., Chapman, L., Grimmond, C.S.B., Young, D.T. and Cai, X. (2013) 'Sensors and the city:
a review of urban meteorological networks', International Journal of Climatology, 33(7), pp. 1585-
1600.
Nakamura, T., Kashiwagi, K., Arakawa, Y. and Nakamura, M. (2011) Applications and the Internet
(SAINT), 2011 IEEE/IPSJ 11th International Symposium on. IEEE.
Obe, R.O. and Hsu, L.S. (2015) PostGIS in action. Manning Publications Co.
Seeger, M. (2009) 'Key-Value stores: a practical overview', Computer Science and Media, Stuttgart.
Westra, E. (2015) Python Geospatial Analysis Essentials. Packt Publishing Ltd.

	1. Background
	2. The current approach
	3. Current Status and Performance
	4. Future Work
	5. Biography
	References

