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Summary

Many key infrastructure providers consider proximity based forestry management a key
part of maintenance. In many cases tree failures have a direct negative effect both on the

infrastructure’s continued functionality, and also financially due to increased compensation
claims. Direct tree assessment to preemptively diagnose and remove ’risky’ trees by a qualified

arborist is expensive, subjective and impractical for the continued monitoring of millions of
trees within proximity to critical infrastructures. Therefore, we introduce TREEFALL as a

non-subjective, quantifiable, and repeatable model that works on a per-tree basis to support
relevant decision makers. It builds on a set of well tested and referenced models and its large

scale functionality is demonstrated with a focus on power lines as a key infrastructure, however
it is generalisable to others. The case study shows how TREEFALL can be used to support key

decision makers by suggesting priorities for human surveyors, and ’weak’ points in the
infrastructure.
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1 Introduction and Background

Tree failure is an area of particular interest to the research community - with wind storms being
one of the primary causes of destruction in forests (Gardiner et al., 2010) . For example, 2009’s
storm Klaus resulted in the loss of 43 million meters3 of timber (Colin, Meredieu, Labbé, Belouard,
& Batifol, 2010). Indeed, with the changing climate even stronger wind storms are expected (Della-
Marta & Pinto, 2009). For many forestry applications, the proper estimation and prevention of tree
failure results in reduced timber loss in such events. As a direct result of this need, a number of
models exist within the community to perform such calculations on tree stands; HWIND (H. Peltola,
Kellomäki, Väisänen, & Ikonen, 1999), GALES (Gardiner, Peltola, & Kellomäki, 2000), FOREOLE
(Ancelin, Courbaud, & Fourcaud, 2004), and are similar in the way they each work (H. M. Peltola,
2006). However, the losses experienced in the case of tree failure is not limited to just the monetary
value of the timber; the area surrounding the tree will experience localised effects of tree loss such
as water-logging, ground destabilisation, reduced weather protection and many more. In addition
to the environmental impacts, trees within proximity to critical infrastructure (such as power lines,
rail, or road) also pose a potential risk of damage to, or blocking of the infrastructure. This finan-
cially damages the providers in multiple ways: it requires the removal of the tree(s), the repair of
any damage caused, and the costs incurred from increased compensation claims.
As the size of these infrastructure grows over time, it is becoming apparent that traditional ap-
proaches alone, such as employing experienced arborists, are costly, and impractical for the con-
tinued assessment and monitoring of such large numbers of trees. As a result, such infrastructure
providers are looking towards technology and modelling to help concentrate their efforts in key
areas. This problem is unique in the way that infrastructure is the focus, rather than trees. In-
terestingly, this means using a stand of trees as the unit of analysis is no longer suitable: many
trees within the stand (especially in the middle) are physically too far away from infrastructure
to cause damage, whereas trees near the edge of the stand are more likely to be within proximity
to critical infrastructure. With this uneven distribution of risk throughout the stand, a more apt
unit of assessment would be a single tree, the lack of such has been argued as a weakness of ex-
isting models (Gardiner et al., 2008). This project, Tree Risk Evaluation Environment for Failure
and Limb Loss (TREEFALL) aims to address both of these issues within one tool - it acts as a
repeatable, non-subjective model for assessing the risk of failing trees to critical infrastructure, on
a per-tree basis. What this model does not do is aim to replace the skills and experience of trained
arborists - it instead calculates a value of risk based upon a number existing peer-reviewed models
as a way to aid decision makers prioritise the use of human assessors.

2 The model

The TREEFALL model data flow is shown in Figure 1. It collects three categories of data as
inputs; firstly, data pertaining to wind calculations (shown top left) which consist of long term
wind averages available from Met Office Integrated Data Archive System (MIDAS), observed and
predicted weather data collected from approximately 170 Met stations across the UK, a Digital
Terrain Map (DTM) of the UK at 50m resolution, and a Landcover map for the same area; secondly,



data pertaining to tree calculations (shown top right) which consist of tree locations, heights and
crown areas described within the National Tree Map (NTM) dataset provided by our project partner,
BlueSky; and finally a dataset describing the spatial characteristics of the infrastructure in question
- which can be lines, points or polygon features.

Figure 1: A diagram showing the flow of information in treefall.

The data from these is then grouped and processed by type. The wind and land data is used to build
high resolution wind model of the UK (down to 10m) which takes into account wind characteristics
caused by surface roughness. The data pertaining to trees is used to construct a map of trees -
and to evaluate the protection from wind effects that trees may offer by sheilding them from the
weather. These two datasets are then used to calculate risk by asking; ’what is the predicted wind
at the tree top?’ and ’what speed of wind do the academic models predict failure, given the trees
properties, and the sheilding offered to it by other trees?’. A ’risky’ tree is identified when the
actual wind is greater than the critical wind speed estimated to cause tree failure - and the level of
risk is proportional to the difference between the two values. Similarly, that tree is only risky if it
can physically hit or block infrastructure when falling. TREEFALL performs a novel 3D collision
detection algorithm to calculate the ratio of possible failures that collide with infrastructure. This
value, ranging between 0 and 1 is then multiplied by the aforementioned risk factor as a combined
value for the indication of both risk to windthrow failure, and risk to infrastructure.



3 Real World Usage

TREEFALL focuses on a small number key factors to predict wind throw failure in trees. As such
it should not be seen as a tool to predict exactly when a tree will fail, but more as a tool that
quantifies such risk, targeted at those making forestry based decisions. As such, the whole model
is available as a web interface, and designed to be as user friendly as possible. This interface allows
the exploration of all discussed datasets (trees, wind, land and infrastructure network). From here a
user can load either historical or predicted weather events, or even simulate a hypothetical weather
scenario. Once processed, the web interface colours trees using a ’traffic light’ colour code: red for
risky, and near infrastructure, orange for risky, but cannot hit infrastructure, and green for no risk.
Similarly, the ’in-danger’ sections of infrastructure are coloured red to indicate risk. These can be
seen in Figure 2. It should be noted that whilst the traffic light colours are used in the following
figures, additional colour schemes suitable for those with colour-blindness are available within the
interface options.

Figure 2: A screenshot of TREEFALL showing web interface, and ’traffic light’ risk colouring. Here,
powerlines at risk can been seen in red, with those trees posing risk also coloured red.

Whilst useful to gain an overall understanding of the location of ’risky’ trees, this model is arguably



most helpful when used with scenarios, and then analysed in conjunction with a number of network
characteristics. This is possible as the tool allows the export of the predictions in a number of
common data formats. For example, Figure 3 shows risky trees from a southerly 20m/s wind
classified by quantiles. This might be used to identify high density areas of risky trees to prioritise
further tree surveys in person.

Figure 3: The Lynn Peninsula, network coloured by density of nearby risky trees.

Similarly, there exist a number of other metrics which can be investigated - e.g prioritising those ar-
eas of the network that are more important. Whilst TREEFALL’s immediate use is fairly self-evident
as demonstrated above, the continuation of this work investigates and discusses more complex uses
of this risk assessment with focus on critical infrastructures in two example areas - one in north
Wales, of roughly 8000 km2 and and estimated 1.8 million trees1, and another in southern England
of approximately 1,600 km2, and just over 3 million trees estimated2.
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à jour de la ressource en pin maritime du massif des landes de gascogne après la tempête klaus
du 24 janvier 2009.

Della-Marta, P. M., & Pinto, J. G. (2009). Statistical uncertainty of changes in winter storms over
the north atlantic and europe in an ensemble of transient climate simulations. Geophysical
Research Letters, 36 (14).

Gardiner, B., Blennow, K., Carnus, J.-M., Fleischer, P., Ingemarson, F., Landmann, G., . . . others
(2010). Destructive storms in european forests: past and forthcoming impacts. Destructive
storms in European forests: past and forthcoming impacts.

Gardiner, B., Byrne, K., Hale, S., Kamimura, K., Mitchell, S. J., Peltola, H., & Ruel, J.-C. (2008).
A review of mechanistic modelling of wind damage risk to forests. Forestry: An International
Journal of Forest Research, 81 (3), 447. doi: 10.1093/forestry/cpn022
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